Scroll back to top
| Shape | Diagram | Equations |
|---|---|---|
| Rectangle | | \( \bar{I}_{x'} = \frac{1}{12}b h^3 \) \( \bar{I}_{y'} = \frac{1}{12}b^3 h \) \( I_x = \frac{1}{3}b h^3 \) \( I_y = \frac{1}{3}b^3 h \) \( J_c = \frac{1}{12}bh(b^2+h^2) \) |
| Triangle | | \( \bar{I}_{x'} = \frac{1}{36}bh^3 \) \( I_x = \frac{1}{12}bh^3 \) |
| Circle | | \( \bar{I}_x = \bar{I}_y = \frac{1}{4} \pi r^4 \) \( J_O= \frac{1}{2} \pi r^4 \) |
| Semicircle | | \( I_x = I_y = \frac{1}{8} \pi r^4 \) \( J_O = \frac{1}{4} \pi r^4 \) |
| Quarter circle | | \( I_x = I_y = \frac{1}{16} \pi r^4 \) \( J_O = \frac{1}{8} \pi r^4 \) |
| Ellipse | | \( \bar{I}_x = \frac{1}{4} \pi a b^3 \) \( \bar{I}_y = \frac{1}{4} \pi a^3 b \) \( J_O = \frac{1}{4} \pi ab(a^2+b^2) \) |
| Mass moment of inertia | Area moment of inertia (used in solid mechanics!) | |||
|---|---|---|---|---|
| Other names | First moment of area | Second moment of area | Polar moment of area | |
| Description | Determines the torque needed to produce a desired angular rotation about an axis of rotation (resistance to rotation) | Determines the centroid of an area | Determines the moment needed to produce a desired curvature about an axis(resistance to bending) | Determines the torque needed to produce a desired twist a shaft or beam(resistance to torsion) |
| Equations | | | | |
| Units | \( \mathrm{mass} \ \mathrm{length} ^ 2 \) | \( \mathrm{length} ^ 3 \) | \( \mathrm{length} ^ 4 \) | \( \mathrm{length} ^ 4 \) |
| Typical Equations | | | | |
| Courses | Dynamics | Solid mechanics | Statics, solid mechanics | Solid mechanics |
Review?
Need a review of moment of inertia (second moment of area)?
This content has also been in statics.
The second moment of area determines the moment needed to produce a desired curvature about an axis (resistance to bending).