Scroll back to top
A vector is an arrow with a length and a direction. Just like positions, vectors exist before we measure or describe them. Unlike positions, vectors can mean many different things, such as position vectors, velocities, etc. Vectors are not anchored to particular positions in space, so we can slide a vector around and locate it at any position.
Change:
Two vectors, which may or may not be the same vector. Moving a vector around does not change it: it is still the same vector.
Some textbooks differentiate between free vectors, which are free to slide around, and bound vectors, which are anchored in space. We will only use free vectors.
We will use the over-arrow notation \( \vec{a} \) for vector quantities. Other common notations include bold \( \boldsymbol{a} \) and under-bars \( \underline{a} \). For unit (length one) vectors we will use an over-hat \( \hat{a} \).
When using coordinates to describe the location of physical positions in the real world, we must always have appropriate units of length for the coordinates. For example, the following coordinates all specify the same position:
It is important to distinguish between units and dimensions. The base dimensions include mass (M), length (L), and time (T), and can be combined to produce dimensions such as L/T or L T\( ^{-1} \) for velocity. Each physical quantity such as velocity has just one set of dimensions, and there is no choice in this.
Units are particular ways of measuring dimensional quantities, and include the SI units kilogram (kg), meter (m), and second (s), as well as the customary U.S. units pound (lb) and foot (ft). A given physical quantity can be written in terms of many different units, although all of these must conform to the dimensions of the quantity. For example, velocity has dimension L/T and so it can be written in terms of the units m/s, ft/s, km/h, or many other choices.
Angles are an example of a dimensionless quantity (having dimension 1), but they still have units, typically either radians (rad) or degrees (°).
Did you know?
The SI unit system is the definitive system of measurement used in science and engineering. Other systems, such as U.S. customary units are defined in terms of SI units, so that an inch is defined to be exactly 2.54 cm, for example.
The National Institute of Standards and Technology (NIST) maintains an excellent reference guide to SI units, including precise rules and style conventions for writing units in scientific and engineering work.
A unit vector is any vector with a length of one. We use the special over-hat notation \( \hat{a} \) to indicate when a vector is a unit vector. Any non-zero vector \( \vec{a} \) gives a unit vector \( \hat{a} \) that specifies the direction of \( \vec{a} \).
Any vector can be written as the product of its length and direction:
Three vectors and their decompositions into lengths and directional unit vectors.
To describe vectors mathematically, we write them as a combination of basis vectors. An orthonormal basis is a set of two (in 2D) or three (in 3D) basis vectors which are orthogonal (have 90° angles between them) and normal (have length equal to one). We will not be using non-orthogonal or non-normal bases.
Any other vector can be written as a linear combination of the basis vectors:
The numbers \(a_1, a_2, a_3\) are called the components of \( \vec{a} \) in the \( \,\hat{\imath}, \hat{\jmath}, \hat{k} \) basis. If we are in 2D then we will only have two components for a vector.
Writing a vector as the sum of scaled basis vectors. The scale factors are the components of the vector. Here \( \vec{a} = 3\hat\imath + 2\hat\jmath \), so the components of \( \vec{a} \) are \(a_1 = 3\) and \(a_2 = 2\).
We draw the symbol \(\odot\) (arrow tip) to indicate a vector coming out of the page, and \(\otimes\) (arrow fletching) to indicate an arrow going into the page.
Two standard arrangements of the basis vectors when working in 2D. Either \(\hat\jmath\) is the vertical and \( \hat{k} \) is out of the page, or \( \hat{k} \) is the vertical and \(\hat\jmath\) is into the page. In both cases \(\hat\imath\) is horizontal.
Notation note
Just as for position coordinates, we can write the vector components \(3\hat\imath + 2\hat\jmath\) as the ordered list \((3, 2)\) if we know which basis we are using. Because we often will be using several bases simultaneously, we will generally write the components explicitly in the \(3\hat\imath + 2\hat\jmath\) form.
Did you know?
The use of the letter \(i,j,k\) for basis vectors is due to William Hamilton, who was motivated by thinking of basis vectors as extensions of the complex number \(i\). This notation was popularized by the book Vector Analysis: A Text Book for the Use of Students of Mathematics and Physics Founded upon the Lectures of J. Willard Gibbs (1901), by E. B. Wilson. This book also introduced the use of bold letters to represent vectors.
The length of a vector \( \vec{a} \) is written either \( \| \vec{a} \| \) or just plain \(a\). The length can be computed using Pythagorus’ theorem:
Computing the length of a vector using Pythagorus' theorem.
Some common integer vector lengths are \( \vec{a} = 4\hat\imath + 3\hat\jmath \) (length \(a = 5\)) and \( \vec{b} = 12\hat\imath + 5\hat\jmath \) (length \(b = 13\)).
Did you know?
Sets of three integers \(a,b,c\) where \(a^2 + b^2 = c^2\) are called Pythagorean triples. A long list of such triples is given on the Plimpton 322 clay tablet written by the ancient Babylonians around 1800 BCE, although it is unclear how they generated these numbers. Pythagorean triples lead to complex mathematics, including the curious patterns shown below and Fermat's Last Theorem.
The values of \(a\) and \(b\) for all Pythagorean triples \(a,b,c\) with \(a\) and \(b\) up to 2000.
To change the basis that a vector is written in, we need to know how the basis vectors are related. We do this by writing one set of basis vectors in terms of the other basis vectors. If we want to change from \( \hat\imath,\hat\jmath \) to \( \hat{u},\hat{v} \), then we need to write \( \hat\imath,\hat\jmath \) in terms of \( \hat{u},\hat{v} \) and then substitute the expressions.
We can also write the general expressions for basis change, as below.
In 2D the change between two orthonormal bases is a rotation by an angle \( \theta \), resulting in the change of basis expression below.
Vector expressions are true no matter which basis we write the vectors in, even if they are written in different bases.
The projection and complementary projection are:
Adding the projection and the complementary projection of a vector just give the same vector again, as we can see on the figure below.
Projection of \( \vec{a} \) onto \( \vec{b} \) and the complementary projection.
As we see in the diagram above, the complementary projection is orthogonal to the reference vector:
Two useful derivatives are the rates of change of a vector's length and direction:
An immediate consequence of the derivative of direction formula is that the derivative of a unit vector is always orthogonal to the unit vector:
Recall that we can always write a vector as the product of its length and direction, so \( \vec{a} = a \hat{a} \). This gives the following decomposition of the derivative of \( \vec{a} \).
Show:
Vector derivatives can be decomposed into length changes (projection onto \( \vec{a} \)) and direction changes (complementary projection). Compare to Figure #rvv-fu.